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Critical Temperature in Bosonic Gases 
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Abstract— A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of bosons cooled to absolute zero (0 K or -273.15 ºC) [1]. 
Under such conditions, the bosons occupy the lowest quantum state, at which point quantum effects become apparent on a macroscopic 
scale. These effects are called macroscopic quantum phenomena. The extreme cold caused the individual atoms to condense into a 
"superatom" that behave as a single entity. Recently, researchers at JILA, a joint program of NIST and the University of Colorado at 
Boulder, recently announced that they created a Bose-Einstein Condensate, predicted almost 90 years ago by Albert Einstein and Indian 
physicist Satyendra Nath Bose, within a range of temperatures not predicted to the original theory. This paper provides a method to 
calculate the critical temperature for a bosonic gas to achieve the conditions observed in a Bose-Einstein Condensate. 

Index Terms— Bose-Einstein condensate, bosonic gas, critical temperature, macroscopic quantum phenomena, states of matter, quantum 
state. 

——————————      —————————— 

1 INTRODUCTION                                                                     
 Bose-Einstein condensate (BEC) is a state of matter of a 
dilute gas of bosons cooled to temperatures very near 
absolute zero (0 K or -273.15 ºC). Under such conditions, 

a large fraction of the bosons occupy the lowest quantum 
state, at which point quantum effects become apparent on a 
macroscopic scale. These effects are called macroscopic quan-
tum phenomena. 

The Bose-Einstein Condensate state of matter was first pre-
dicted by Satyendra Nath Bose and Albert Einstein in 1924-25. 
Bose first sent a paper to Einstein on the quantum statistics of 
light quanta (now called photons). Einstein was impressed, 
translated the paper himself from English to German and 
submitted it for Bose to the Zeitschrift für Physik, which pub-
lished it. Einstein then extended Bose's ideas to material parti-
cles (or matter) in two other papers [2]. The result of the efforts 
of Bose and Einstein is the concept of a Bose gas, governed by 
Bose-Einstein statistics, which describes the statistical distribu-
tion of identical particles with integer spin, now known as 
bosons. Bosonic particles, which include the photon as well as 
atoms such as helium-4, are allowed to share quantum states 
with each other. Einstein demonstrated that cooling bosonic 
atoms to absolute zero would cause them to fall (or “con-
dense”) into the lowest accessible quantum state, resulting in a 
new form of matter. 

In 1938 Fritz London proposed BEC as a mechanism for su-
perfluidity in 4-He and superconductivity [4], [5]. 

3 CRITICAL TEMPERATURE 
In the first gaseous condensate was produced by Eric Cornell 
and Carl Wieman at the University of Colorado at Boulder 
NIST–JILA lab, using a gas of rubidium atoms cooled to 170 
nanokelvin (nK). For their achievements Cornell, Wieman, and 
Wolfgang Ketterle at MIT received the 2001 Nobel Prize in 
Physics. In November 2010 the first photon BEC was observed 
[3]. 

This transition to BEC occurs below a critical temperature, 
which for a uniform three-dimensional gas consisting of non-
interacting particles with no apparent internal degrees of free-
dom is given by: 
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where: 
 
T c is the critical temperature; 
 is the particle density; 
m is the mass per boson; 
 is the reduced Planck constant; 
k b is the Boltzmann constant; and 
 is the Riemann zeta function 

4 EINSTEIN'S ARGUMENT 
Consider a collection of N noninteracting particles, which can 
each be in one of two quantum states, 0 and 1 . If the two 
states are equal in energy, each different configuration is 
equally likely. 

If we can tell which particle is which, there are 2N
different 

configurations, since each particle can be in 0 or 1 inde-
pendently. In almost all of the configurations, about half the 
particles are in 0 and the other half in 1 . The balance is a 
statistical effect: the number of configurations is largest when 
the particles are divided equally. 

If the particles are indistinguishable, however, there are on-
ly 1N different configurations. If there are K particles in 
state 1 , there are KN  particles in state 0 . Whether any 
particular particle is in state 0  or in state 1  cannot be de-
termined, so each value of K  determines a unique quantum 
state for the whole system. If all these states are equally likely, 
there is no statistical spreading out; it is just as likely for all the 
particles to sit in  0  as for the particles to be split half and 
half. 

Suppose now that the energy of state 1  is slightly greater 
than the energy of state 0 by an amount E . At temperature 
T , a particle will have a lesser probability to be in state 0 by 
e kT

E
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. In the distinguishable case, the particle distribution 
will be biased slightly towards state 0 and the distribution 
will be slightly different from half and half. But in the indis-
tinguishable case, since there is no statistical pressure toward 
equal numbers, the most likely outcome is that most of the 
particles will collapse into state 0 . 
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In the distinguishable case, for large N , the fraction in 
state 0 can be computed. It is the same as flipping a coin 
with probability proportional to e T

E
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 to land tails. The 
probability to land heads is 

p1
1

, which is a smooth func-
tion of p and thus of the energy. 

In the indistinguishable case, each value of K is a single 
state, which has its own separate Boltzmann probability. So 
the probability distribution is exponential: 
 

  Pe k
T
KE

CCkP  





 

 
 

For large N , the normalization constant C is  p1 . The 
expected total number of particles not in the lowest energy 
state, in the limit that N , is equal to: 
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It does not grow when N is large, it just approaches a con-
stant. This will be a negligible fraction of the total number of 
particles. So a collection of enough Bose particles in thermal 
equilibrium will mostly be in the ground state, with only a few 
in any excited state, no matter how small the energy differ-
ence. 

Consider now a gas of particles, which can be in different 
momentum states labeled k . If the number of particles is 
less than the number of thermally accessible states, for high 
temperatures and low densities, the particles will all be in dif-
ferent states. In this limit the gas is classical. As the density 
increases or the temperature decreases, the number of accessi-
ble states per particle becomes smaller, and at some point 
more particles will be forced into a single state than the maxi-
mum allowed for that state by statistical weighting. From this 
point on, any extra particle added will go into the ground 
state. 

To calculate the transition temperature at any density, inte-
grate over all momentum states the expression for maximum 
number of excited particles 
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When the integral is evaluated with the factors of k b and 

 restored by dimensional analysis, it gives the critical tem-
perature formula of the preceding section. Therefore, this inte-
gral defines the critical temperature and particle number cor-
responding to the conditions of negligible chemical potential. 
In Bose–Einstein statistics distribution,  is actually still non-
zero for Bose-Enstein Condensates; however,  is less than 
the ground state energy. Except when specifically talking 
about the ground state,  can consequently be approximated 
for most energy or momentum states as 0 . 

 

5 Conclusion 
This work proposes a new way to calculate critical tempera-
tures for Bose-Einstein Condensates, and it may help experi-
mental cientists to increase the precision of their experiments 
in superconductivity and superfluidity. 
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